If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27000=1/2(900)(x)^2
We move all terms to the left:
27000-(1/2(900)(x)^2)=0
Domain of the equation: 2900x^2)!=0We get rid of parentheses
x!=0/1
x!=0
x∈R
-1/2900x^2+27000=0
We multiply all the terms by the denominator
27000*2900x^2-1=0
Wy multiply elements
78300000x^2-1=0
a = 78300000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·78300000·(-1)
Δ = 313200000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{313200000}=\sqrt{360000*870}=\sqrt{360000}*\sqrt{870}=600\sqrt{870}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-600\sqrt{870}}{2*78300000}=\frac{0-600\sqrt{870}}{156600000} =-\frac{600\sqrt{870}}{156600000} =-\frac{\sqrt{870}}{261000} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+600\sqrt{870}}{2*78300000}=\frac{0+600\sqrt{870}}{156600000} =\frac{600\sqrt{870}}{156600000} =\frac{\sqrt{870}}{261000} $
| 24.75-(3/8t)=t | | 13=5+c | | 2(v-8)-4=-6(-4v+2)-6v | | -5(u+3)=3u+17 | | −0.8(0.2−4x)=2.2x−2.6 | | f+-12=38 | | 2(3-4)=4-2x3 | | -5x-16=8x–3 | | (x+24)=x | | 248=80-y | | f=1.59= | | -10(r-95)=-40 | | 5x-(2x+3=-3 | | 2/5=x/90 | | 4x+3=-73 | | 2=2a+6-a | | 100+(2x+15)+4x=x | | d=5/6(F*G) | | 19=2q+9 | | 4x+18=140 | | 3(4x-6)=12x+5 | | 11+7.1n=5+7.6n | | 3u+-1=-7 | | m²+10m+9=10 | | 7(1+x)-2(6+6x)=-7-8x+4x | | 6x2–40=x. | | 3(v+8)=-2(4v-6)+3v | | y/2+3=6 | | -9=-h/12-5 | | 2u+3=9(u-2) | | 3(x-7)=14-4x | | 16+14=n+18 |